SluitenHelpPrint
Switch to English
Cursus: INFOMUDR
INFOMUDR
Using data from routine care
Cursus informatieRooster
CursuscodeINFOMUDR
Studiepunten (ECTS)7,5
Categorie / NiveauM (M (Master))
CursustypeCursorisch onderwijs
VoertaalEngels
Aangeboden doorFaculteit Betawetenschappen; Graduate School of Natural Sciences; Graduate School of Natural Sciences;
Contactpersoongeen D.H. Kwakkel, MSc
E-maild.h.kwakkel-4@umcutrecht.nl
Docenten
Docent
geen D.H. Kwakkel, MSc
Overige cursussen docent
Contactpersoon van de cursus
geen D.H. Kwakkel, MSc
Overige cursussen docent
Blok
3-GS  (06-02-2023 t/m 21-04-2023)
Aanvangsblok
3-GS
TimeslotA: A (MA-ochtend, DI-namiddag, WO-ochtend)
Onderwijsvorm
Voltijd
Cursusinschrijving geopendvanaf 31-10-2022 t/m 25-11-2022
AanmeldingsprocedureOsiris Student
Inschrijven via OSIRISJa
Inschrijven voor bijvakkersNee
VoorinschrijvingNee
Na-inschrijvingJa
Na-inschrijving geopendvanaf 23-01-2023 t/m 20-02-2023
WachtlijstNee
Cursusdoelen
Students
  1. learn methods to extract, link and prepare structured and unstructured data from health registers, patient information systems, pharmacy records, health records.
  2. learn about legal and ethical constraints and how to use privacy enhancing technologies (such as pseudonymisation) to address these constraints
  3. learn to define which information is required to be able to determine a specific measurement of the effectiveness of an intervention in health care or public health
  4. learn to retrieve this information from existing observational registries, big data repositories and registry based trials
  5. learn which provisions to take to deal with legal and ethical issues concerning the use of big data
  6. learn which methods to use to answer causal questions about the effect of intervention on observational big data
  7. are familiar with concepts of evaluating probabilistic prediction models, such as discrimination and calibration, and how to asses them using cross-validation
  8. have profound knowledge of the reasons for over-fitting and complete separation with high-dimensional data
Assessment
There are 3 exams in total during this course.
            •  2 assignments in weeks 3 and 5 of the course each counting respectively for 30% of the grade.
            •  1 case study, to be handed in at the end of week 10 of the course counting for 40% of the grade.
The average weighted grade will be your final score for this course and the one entered into Osiris.

For a retake the mark of the original test needs to be at least a 4.

Prerequisites
INFOMDWR Data Wrangling

This course is for students in the master Applied Data Science only.

 
Inhoud
Course form
Lectures, exercises, assignments.

Literature
Chapters and articles, listed in the course manual.
Competenties
-
Ingangseisen
Je moet voldoen aan de volgende eisen
  • Ingeschreven voor een opleiding van de faculteit Faculteit Betawetenschappen
  • Ingeschreven voor één van de volgende opleidingen
    • Applied Data Science
Verplicht materiaal
-
Werkvormen
Hoorcollege

Werkcollege

Toetsen
Eindresultaat
Weging100
Minimum cijfer-

SluitenHelpPrint
Switch to English