SluitenHelpPrint
Switch to English
Cursus: INFOMPR
INFOMPR
Pattern recognition
Cursus informatieRooster
CursuscodeINFOMPR
Studiepunten (ECTS)7,5
Categorie / NiveauM (M (Master))
CursustypeCursorisch onderwijs
VoertaalEngels
Aangeboden doorFaculteit Betawetenschappen; Graduate School of Natural Sciences; Graduate School of Natural Sciences;
Contactpersoondr. A.J. Feelders
Telefoon+31 30 2533176
E-mailA.J.Feelders@uu.nl
Docenten
Contactpersoon van de cursus
dr. A.J. Feelders
Overige cursussen docent
Docent
dr. A.J. Feelders
Overige cursussen docent
Docent
dr. A. Gatt
Overige cursussen docent
Blok
2  (14-11-2022 t/m 03-02-2023)
Aanvangsblok
2
TimeslotD: D (WO-middag, WO-namiddag, Vrijdag)
Onderwijsvorm
Voltijd
Cursusinschrijving geopendvanaf 19-09-2022 t/m 30-09-2022
AanmeldingsprocedureOsiris Student
Inschrijven via OSIRISJa
Inschrijven voor bijvakkersJa
VoorinschrijvingNee
Na-inschrijvingJa
Na-inschrijving geopendvanaf 24-10-2022 t/m 25-10-2022
WachtlijstJa
Plaatsingsprocedureadministratie onderwijsinstituut
Cursusdoelen
After completing this course, the student:
  • knows important methods of statistical pattern recognition and their theoretical foundation
  • knows general principles of statistical learning, such as over-fitting and the bias-variance decomposition
  • knows how to apply methods of statistical pattern recognition to practical data analysis problems
  • can perform an experimental evaluation of statistical learning methods in a sound manner
  • knows the fundamental deep learning topics
  • has practical skills for applying deep learning methods (e.g. feed forward neural networks, CNNs, RNNs)
  • can model a research-oriented problem in the application domain of deep learning and suggest a solution using deep learning techniques

Assessment
The course is graded through a practical assignment (20% of the final mark), a group project (40%) and a written exam (40%).

A repair test requires at least a 4 for the original test.
Inhoud

In this course we study statistical pattern recognition and machine learning.

The subjects covered are:

  • General principles of data analysis: overfitting, bias-variance trade-off, model selection, regularization, the curse of dimensionality.
  • Linear statistical models for regression and classification.
  • Clustering and unsupervised learning.
  • Support vector machines.
  • Neural networks and deep learning.

Knowledge of elementary probability theory, statistics, multivariable calculus and linear algebra is presupposed.

Course form
Lectures and computer lab sessions.

Literature

  • Book: Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
  • Book: Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016.
    Book URL: http://www.deeplearningbook.org.
  • Possibly additional literature in the form of research papers, book chapters, etcetera.
Competenties
-
Ingangseisen
Je moet voldoen aan de volgende eisen
  • Toelatingsbeschikking voor de master toegekend
Verplicht materiaal
-
Werkvormen
Hoorcollege

Werkcollege

Toetsen
Eindresultaat
Weging100
Minimum cijfer-

SluitenHelpPrint
Switch to English