Switch to English
Network science
Cursus informatie
Studiepunten (EC)7,5
After completing this course, the student will have:
  • Knowledge of important (random) graph models and properties for networks
  • Knowledge of important dynamics of networks
  • Knowledge of important processes on networks
  • Knowledge of important algorithmic challenges and solutions for the analysis of very large networks
  • The ability to analyze properties of random graphs Ability to analyze properties of dynamics and processes on networks
  • The ability to survey literature of an advanced topic in network algorithms
  • The ability to experimentally study an advanced topic in network algorithms
  • The ability to hold a brief presentation of an advanced topic in network algorithms.
  • The ability to provide/use feedback to/from peers.
Mini-tests (25% of the final mark), term paper (55%), flash talk (10%), peer reviews (10%).

The course assumes that you have basic skills in algorithms and mathematics: familiarity with basic graph algorithms (shortest paths, flows), such as offered in Algoritmiek (INFOAL), and basic understanding of NP-completeness, such as offered in Algoritmiek (INFOAL) or Algorithms for Decision Support (INFOMADS). Having taken Algorithms and Networks (INFOAN) is very helpful, but not required. During the class, we also work with basic probabilities and some integrals.

Network science is an exciting new field that studies large and complex networks, such as social, biological, and computer networks. The class will address topics from network structure and growth to the spread of epidemics. We study the diverse algorithmic techniques and mathematical models that are used to analyze such large networks, and give an in-depth description of the theoretical results that underlie them.
Some topics are random graphs, giant components, power laws, percolation, spreading phenomena, community detection, basic algorithms for network science, lower bounds and advanced algorithms for polynomial-time problems, sampling algorithms, streaming algorithms, sublinear algorithms, and graph partitioning algorithms.

Course form
Lectures, tutorials, term paper, peer feedback.

Recommended: A. Barabasi, Network Science, for free online M.E.J. Newman, Networks, 2nd edition (2018).
The class is mostly based on the Barabasi book, with some parts taken from Newman. Using either book is sufficient for the class.

Switch to English