SluitenHelpPrint
Switch to English
Cursus: 200400502
200400502
Logische methoden in de natuurlijke taalverwerking
Cursus informatieRooster
Cursuscode200400502
Studiepunten (ECTS)7,5
Categorie / NiveauM (Master)
CursustypeCursorisch onderwijs
VoertaalEngels
Aangeboden doorFaculteit Geesteswetenschappen; Ac School Moderne Talen;
Contactpersoonprof. dr. M.J. Moortgat
Telefoon+31 30 2536043
E-mailM.J.Moortgat@uu.nl
Docenten
Docent
prof. dr. M.J. Moortgat
Feedback en bereikbaarheid
Overige cursussen docent
Contactpersoon van de cursus
prof. dr. M.J. Moortgat
Overige cursussen docent
Blok
Onbekend
Aanvangsblok
4
TimeslotD: WO-middag, WO-namiddag, Vrijdag
Onderwijsvorm
Voltijd
Aanmeldingsprocedurestudentenbalie
Inschrijven via OSIRISJa
Inschrijven voor bijvakkersJa
VoorinschrijvingNee
WachtlijstNee
Plaatsingsprocedureadministratie onderwijsinstituut
Cursusdoelen
-The student gains an understanding of the state-of-the-art of current type-theoretic grammars (multimodal TLG and CCG, discontinuous systems, symmetric systems, lambda-mu calculi); -The student shows to be able to contribute to this research by means of a final paper.
Inhoud

The course discusses recent developments in type-theoretic grammars with an emphasis on the syntax-semantics interface. Semantic interpretation in categorial type logics is realized in terms of the Curry-Howard correspondence between derivations and terms of the lambda calculus.

We start with the minimal requirements a categorial system has to meet in order to enjoy this correspondence.

We then turn to mismatches between syntactic and semantic organization,involving both overt and covert forms of movement. We discuss how these mismatches have been dealt with in multi-modal approaches (within the type-logical and the combinatory categorial grammar traditions), discontinuous calculi, lambda grammars. A shared property of these approaches is their reliance on non-logical axioms, which implies an essentially stipulative treatment of word order universals.

In the second part of the course, we turn to symmetric grammars, an extension of the typelogical framework originally proposed by Grishin in 1983. In the symmetric grammars, the familiar type-forming operations (product, slashes) are complemented with their duals (sum, difference operations). The two families interact via structure-preserving distributivity laws. Mismatches at the syntax-semantics interface are resolved in a way that respects word order and constituent structure.

Symmetric categorial grammar, from a logical point of view, has a`classical' flavour. The Curry-Howard correspondence for classical systems is expressed in terms of the $\lambda\mu$ calculus, and the continuation semantics that goes with it. We discuss current uses of continuations in natural language semantics.

In the final part, we discuss proof nets, parsing and complexity of the type logics we have considered, and their place within the Chomsky hierarchy.

 

Ingangseisen
Er moet voldaan zijn aan de cursus:
- Mastercursussen Geesteswetenschappen (200501100)
Voorkennis
Logic, formal syntax and semantics, lambda calculus
Voorkennis kan worden opgedaan met
Semantics (CKI); Computational Grammars (TLW); Parsing-as-deduction (CKI)
Bronnen van zelfstudie
Van Benthem and ter Meulen (eds.) Handbook of Logic and Language (Elsevier/MIT Press, 1997), Chapters 2, 9, 12, 15.
Verplicht materiaal
Teksten
Electronic materials.
Kosten materiaal:0,00
Aanbevolen materiaal
Diverse
Typelogical Grammars. Stanford Encyclopedia of Philophy, http://plato.stanford.edu
Kosten materiaal:0,00
Werkvormen
Hoor/werkcollege

Algemeen
Presentations of state-of-the-art research in computational syntax and semantics

Voorbereiding bijeenkomsten
-Reading the background literature
-Preparation of presentations on this literature
-Take-home exercises

Bijdrage aan groepswerk
-Presentation of components of the literature under discussion
-Monitoring of discussion by the convenor
-Active participation in the discussion

Toetsen
Actieve deelname
Weging15
Minimum cijfer-

Opdracht(en)
Weging20
Minimum cijfer-

Paper
Weging33
Minimum cijfer-

Referaat
Weging32
Minimum cijfer-

Beoordeling
Presentation; participation in class discussion; assignments; final paper

Deadlines
Weekly take-home assignments; in-class quizzes.

SluitenHelpPrint
Switch to English