Begrip van grondslagen computatietheorie en complexiteit. Toepassingen in de cryptografie. |
|
Part1. Basic formal
language theory Finite automata, regular languages, context-free languages.
Part 2. Basic computation
theory Turing machines, computable functions Church-Turing thesis, Entscheidungsproblem Universal Turing machine Undecidability of
the halting problem Decidable and undecidable logical theories, Goedel Theorem
Part 3. Basic complexity
theory Time and space complexity measures. Classes P
and PSPACE. Class NP, nondeterministic Turing machines.
Satisfyiability problem. Clique and Hamiltonian path problems. Polynomial reducibility. NP-completeness. Cook's Theorem. PSPACE-completeness.
Part 4. Elements of cryptography Calculating modulo n. Ring Z_n. Inverible elements. Euclid algorithm. Euler function. Euler theorem and Fermat's little theorem. Pseudoprimes. Probabilistic polynomial algrothms for testing
pseudoprimality and primality.
Cryptosystems, one time pad
cryptosystem, information-theoretic
security Public key cryptosystems RSA cryptosystem Electronic signatures in RSA.
|
|
|